IRREDUCIBLE CONNECTED LIE SUBGROUPS OF $GL_n(R)$ ARE CLOSED

BY DRAGOMIR Ž. DJOKOVIĆ

ABSTRACT

If G is a connected real Lie group and $\pi: G \to \operatorname{Aut}(V)$ a continuous irreducible finite-dimensional real representation then we show that $\pi(G)$ is closed in $\operatorname{Aut}(V)$. A similar result is valid in the complex case.

The following theorem is quoted from Kobayashi and Nomizu [4, p. 277].

THEOREM 2. Let G be a connected Lie subgroup of SO(n) which acts irreducibly on \mathbb{R}^n . Then G is closed in SO(n).

We shall show that SO(n) can be replaced by $GL_n(\mathbf{R})$ in the above theorem.

THEOREM A. Let G be a connected Lie subgroup of $GL_n(\mathbf{R})$ which acts irreducibly on \mathbf{R}^n . Then G is closed in $GL_n(\mathbf{R})$.

The proof is based on the following result [2, prop. 1].

PROPOSITION 1. Let G be a real Lie group, H an analytic subgroup of G, N the radical of H and S a maximal semi-simple analytic subgroup of H. Then $N \cap S$ is contained in the center Z of S. If the index of $N \cap S$ in Z is finite, then $\tilde{H} = \tilde{N}S$ and \tilde{N} is the radical R of \tilde{H} .

(The operator $\bar{}$ denotes the closure in G, and analytic subgroup is a synonym for connected Lie subgroup.)

PROOF OF THEOREM A. Since G acts irreducibly in \mathbb{R}^n it follows that \mathbb{R}^n is also simple as a module for the Lie algebra L(G) of G. By [1, prop. 5, pp. 78–79.], L(G) is reductive and hence we have G = NS where N is the identity component of the center of G (and also the radical of G), and S is a normal semi-simple subgroup of G. By [3, prop. 4.1, p. 221], the center Z of S is finite

and so we can apply the above Proposition 1 to $GL_n(\mathbf{R})$ and G. It follows that $\bar{G} = \bar{N}S$ where \bar{G} is the closure operator in $GL_n(\mathbf{R})$. Thus, it suffices to show that $\bar{N} = N$.

The endomorphism ring $\mathbf{D} = \operatorname{End}_G(\mathbf{R}^n)$ is a finite-dimensional real division algebra (by Schur's lemma) and so \mathbf{D} is isomorphic to one of the algebras \mathbf{R} (real numbers), \mathbf{C} (complex numbers), or \mathbf{H} (real quaternions). Since \mathbf{D} is a vector subspace of the matrix algebra $M_n(\mathbf{R})$, it is closed in $M_n(\mathbf{R})$. Consequently the multiplicative group $\mathbf{D}^* = \mathbf{D} \setminus \{0\}$ is closed in $\mathbf{GL}_n(\mathbf{R})$. Now, we note that every abelian connected Lie subgroup of \mathbf{D}^* is closed in \mathbf{D}^* (this is obvious if $\mathbf{D} \simeq \mathbf{R}$ or \mathbf{C} , and is easy to check when $\mathbf{D} \cong \mathbf{H}$). Since $\mathbf{N} \subset \mathbf{D}^*$, it follows that \mathbf{N} is closed in \mathbf{D}^* . But \mathbf{D}^* is closed in $\mathbf{GL}_n(\mathbf{R})$ and consequently $\bar{\mathbf{N}} = \mathbf{N}$. This completes the proof.

One can state this theorem in a slightly more general form:

THEOREM A'. Let G be a connected real Lie group and $\pi: G \to \operatorname{Aut}(V)$ a continuous finite-dimensional real representation. If π is irreducible then $\pi(G)$ is closed in $\operatorname{Aut}(V)$.

Indeed, it suffices to remark that $\pi(G)$ is an irreducible analytic subgroup of $\operatorname{Aut}(V)$ and that $\operatorname{Aut}(V) \cong \operatorname{GL}_n(\mathbb{R})$, $n = \dim V$.

The complex version of Theorem A' is also valid, i.e., we have

THEOREM B'. Let G be a connected complex Lie group and $\pi: G \to \operatorname{Aut}(V)$ a finite-dimensional complex analytic representation. If π is irreducible then $\pi(G)$ is closed in $\operatorname{Aut}(V)$.

It suffices to consider the case when $G = \pi(G)$. Then the proof is similar to the above proof of Theorem A and in fact simpler because now we have $\mathbf{D} \cong \mathbf{C}$.

REFERENCES

- 1. N. Bourbaki, Groupes et Algebres de Lie, Chap. I, Hermann, Paris, 1971.
- 2. D. Ž. Djoković, A closure theorem for analytic subgroups of real Lie groups, Canad. Math. Bull., to appear.
 - 3. G. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco, 1965.
- 4. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Publ., New York, 1963.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO, CANADA